Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 665: 389-398, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38537587

RESUMEN

Photothermal therapy (PTT) has attracted much attention due to its less invasive, controllable and highly effective nature. However, PTT also suffers from intrinsic cancer resistance mediated by cell survival pathways. These survival pathways are regulated by a variety of proteins, among which heat shock protein (HSP) triggers thermotolerance and protects tumor cells from hyperthermia-induced apoptosis. Confronted by this challenge, we propose and validate here a novel MXene-based HSP-inhibited mild photothermal platform, which significantly enhances the sensitivity of tumor cells to heat-induced stress and thus improves the PPT efficacy. The Ti3C2@Qu nanocomposites are constructed by utilizing the high photothermal conversion ability of Ti3C2 nanosheets in combination with quercetin (Qu) as an inhibitor of HSP70. Qu molecules are loaded onto the nanoplatform in a pH-sensitive controlled release manner. The acidic environment of the tumor causes the burst-release of Qu molecules, which deplete the level of heat shock protein 70 (HSP70) in tumor cells and leave the tumor cells out from the protection of the heat-resistant survival pathway in advance, thus sensitizing the hyperthermia efficacy. The nanostructure, photothermal properties, pH-responsive controlled release, synergistic photothermal ablation of tumor cells in vitro and in vivo, and hyperthermia effect on subcellular structures of the Ti3C2@Qu nanocomposites were systematically investigated.


Asunto(s)
Hipertermia Inducida , Nanocompuestos , Nanopartículas , Neoplasias , Nitritos , Elementos de Transición , Humanos , Preparaciones de Acción Retardada , Titanio/farmacología , Fototerapia , Neoplasias/terapia , Línea Celular Tumoral , Nanopartículas/química
2.
Int Immunopharmacol ; 126: 111257, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37988910

RESUMEN

Bacillus Calmette Guerin (BCG) perfusion is widely used as cancer adjuvant therapy, in which macrophages play an important role. Novel macrophage activated associated protein 1 (NMAAP1), upregulated after BCG's activation, was proved to promote macrophage polarization to the M1 type. We found that BCG could stimulate mice BMDM to the M1 type and kill tumor cells. After the deletion of NMAAP1, the tumor volume of mice became larger, and the number of M1 type macrophages in the tumor decreased significantly. When macrophages were induced into the M1 type, aerobic glycolysis, the Warburg effect manifested in the increased uptake of glucose and the conversion of pyruvate to lactic acid. NMAAP1 could bind with IP3R and regulate macrophage polarization to the M1 type. However, the specific mechanism of how NMAAP1 regulates macrophage polarization towards the M1 type and plays an antitumor role must be clarified. NMAAP1 could promote the release of lactic acid and pyruvate, enhance the glycolysis of macrophages, and affect the expression of HIF-1α. After inhibition of glycolysis by 2-DG and lactic acid generation by FX11, the effects of NMAAP1 promoting macrophage polarization to the antitumor M1 type were weakened. Furthermore, NMAAP1 upregulated the expression of HIF-1α, which is associated with glycolysis. Moreover, the Ca2+/NF-κB pathway regulated HIF-1α expression by NMAAP1 in the macrophages. NMAAP1 promotes the polarization of macrophages towards the M1 type by affecting the Warburg effect stimulated by BCG.


Asunto(s)
Vacuna BCG , Macrófagos , Ratones , Animales , Activación de Macrófagos , Glucólisis , Ácido Láctico/metabolismo , Piruvatos/farmacología
3.
Microvasc Res ; 151: 104614, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37802365

RESUMEN

Bladder cancer (BLCA) is a common type of urogenital malignancy worldwide. The recurrence and metastasis of bladder cancer are closely related to angiogenesis, but the underlying mechanisms are unclear. In this study, we developed a method to predict survival outcomes among BLCA patients, which could be used to guide immunotherapy and chemotherapy. We obtained patient data from The Cancer Genome Atlas (TCGA) and identified angiogenesis-related genes from the GeneCards database. First, we used differential expression analysis and univariate Cox analysis to identify angiogenesis-related genes and used correlation analysis to generate molecular subtypes based on M2 macrophages. Next, we constructed a prognostic signature consisting of four genes (ECM1, EFEMP1, SLIT2, and PDGFRΑ), which was found to be an independent prognostic factor. Higher risk scores were associated with worse overall survival and higher expression of immune checkpoints. We also evaluated immune cell infiltration using the CIBERSORT and ssGSEA algorithms. Additionally, we performed stratification analyses, constructed a nomogram, and predicted chemotherapeutic responses based on the risk signature. Finally, we validated our findings by using qRT-PCR as well as IHC data to detect the expression levels of the four genes at mRNA and protein levels in BLCA patients and obtained results that were consistent with our predictions. Our study demonstrates the utility of a four-gene prognostic signature for prognostication in bladder cancer patients and designing personalized treatments, which could provide new avenues for personalized management of these patients.


Asunto(s)
Microambiente Tumoral , Neoplasias de la Vejiga Urinaria , Humanos , Algoritmos , Angiogénesis , Bases de Datos Factuales , Proteínas de la Matriz Extracelular , Pronóstico , Neoplasias de la Vejiga Urinaria/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...